
www.manaraa.com

BBN Technical Report #7866:Strongly Typed Genetic ProgrammingDavid J. MontanaBolt Beranek and Newman, Inc.10 Moulton StreetCambridge, MA 02138March 25, 1994AbstractGenetic programming is a powerful method for automatically generating computer programs via theprocess of natural selection [Koza 92]. However, it has the limitation known as \closure", i.e. that all thevariables, constants, arguments for functions, and values returned from functions must be of the samedata type. To correct this de�ciency, we introduce a variation of genetic programming called \stronglytyped" genetic programming (STGP). In STGP, variables, constants, arguments, and returned values canbe of any data type with the provision that the data type for each such value be speci�ed beforehand.This allows the initialization process and the genetic operators to only generate syntactically correctparse trees. Key concepts for STGP are generic functions, which are not true strongly typed functionsbut rather templates for classes of such functions, and generic data types, which are analogous. Toillustrate STGP, we present four examples involving vector/matrix manipulation and list manipulation:(1) the multi-dimensional least-squares regression problem, (2) the multi-dimensional Kalman �lter, (3)the list manipulation function NTH, and (4) the list manipulation function MAPCAR.1 IntroductionGenetic programming is a method of automatically generating computer programs to perform speci�edtasks [Koza 92]. It uses a genetic algorithm to search through a space of possible computer programs forone which is nearly optimal in its ability to perform a particular task. While it was not the �rst methodof automatic programming using genetic algorithms (one earlier approach is detailed in [Cramer 85]), itis so far the most successful. In Section 1.1 we give a very brief overview of genetic algorithms (theunindoctrinated reader is referred to [Goldberg 89] as an introduction). In Section 1.2 we discuss geneticprogramming and how it di�ers from a standard genetic algorithm.1.1 Genetic AlgorithmsGenetic algorithms are a class of algorithms for optimization and learning based on the principles of naturalevolution. They have been shown to be capable of �nding nearly global optima in large and complex spaces1

www.manaraa.com

(16, -4, 2, 6, 13, -11)
mutation

(16, -4, 2, 23, 13, -11)

(16, -4, 2, 6, 13, -11)crossover
(-7, 8, 14, -14, -15, -9) (-7, 8, 2, 6, 13, -9)Figure 1: Mutation and crossover for string-based genetic algorithms.in a relatively short time. Acccording to [Davis 87], a genetic algorithm has �ve basic components:1. A representation scheme provides a way to code possible solutions to a problem in a form that isreadily manipulable by the genetic operators. The traditional, and still most common, representationis as a �xed-length binary string, but any representation is acceptable as long as there are appropriategenetic operators de�ned.2. An evaluation function (or �tness function) assigns a numerical score to any element of the searchspace. For function optimization problems, the evaluation function is the function that is beingoptimized.3. An initialization procedure provides a way to randomly select the individuals (i.e., search points)which constitute the initial population. For a �xed-length string representation, the usual approachis to select each �eld of each string randomly from its possible values.4. A set of genetic operators provides a way to use the information from one or more search pointsto stochastically generate new search points. The two standard genetic operators are mutation andcrossover. Mutation takes a single \parent" and produces a \child" which has the same informationas the parent in all but a small number of locations, where new information is randomly generated.Crossover takes two parents and produces one or two children whose information is some combinationof the information from the parents. Figure 1 shows examples of mutation and crossover acting on�xed-length real-valued strings.5. A variety of parameter settings determine the run-time characteristics of the genetic algorithm. Suchparameters include POPULATION-SIZE, GENERATION-SIZE (when the generation size equalsthe population size there is full generational replacement and when the generation size is one it isa steady-state genetic algorithm), the operator selection probabilities, and parameters involved withparent selection.Given these �ve components, a genetic algorithm operates according to the following steps (and as picturedin Figure 2):1. Using the initialization process, generate an initial population of size POPULATION-SIZE, andevaluate these individuals.2. Generate a new generation of size GENERATION-SIZE via the process of reproduction. Creation ofa single new inidividual occurs as follows: 2

www.manaraa.com

Initialize the population

Select an operator

Select parents

Apply the operator
to the parents

Add the children
to the generation

Are more
childrent needed?

Produce a
new generation
via reproduction

Yes

Incorporate the new generation
into the population

Termination
criterion met?

No

Yes

NoFigure 2: Control ow for a genetic algorithm.(a) Randomly select an operator according to the operator selection probabilities.(b) Randomly select parents from the current population with the probability of selecting a par-ticular individual monotonically increasing with the �tness of the individual. (The number ofparents to be selected is determined by the operator.)(c) Apply the operator to the parents to create one or more children.3. Remove the GENERATION-SIZE worst member of the current population and replace them withthe new generation.4. If a termination criterion is not met, repeat from step (2).3

www.manaraa.com

IF-THEN-ELSE

>

X 0

SET-X

*

+

X 3

-

4 Y

SET-Y

+

X -

Y 1

if x > 0 then
 x := (x + 3) * (4 - y);
else
 y := x + y - 1;
end if; Figure 3: A subroutine and an equivalent parse tree.1.2 Genetic ProgrammingWe now describe the �ve components of the type of genetic algorithm used for genetic programming:(1) Representation - For genetic programming, computer programs are represented as parse trees. Aparse tree is a tree whose nodes are procedures, functions, variables and constants. The subtrees of a nodein a parse tree represent the arguments to the procedure or function of that node. (Since variables andconstants take no arguments, their nodes can never have subtrees, i.e. they always are leaves.) Executinga parse tree means executing the root of the tree, which executes its children nodes as appropriate, and soon recursively.Any subroutine can be represented as a parse tree. For example, the subroutine shown in Figure 3 isrepresented by the parse tree shown in Figure 3. While the conversion from a subroutine to its parse treeis non-trivial in languages such as C, Pascal and Ada, in the language Lisp a subroutine (which in Lispis also called an S-expression) essentially is its parse tree, or more precisely is its parse tree expressed ina linear fashion. Each node representing a variable or a constant is expressed as the name of the variableor value of the constant. Each node representing a function is expressed by a `(' followed by the functionname followed by the expressions for each subtree in order followed by a `)'. A Lisp S-expression for theparse tree of Figure 3 is(IF-THEN-ELSE (> X 0) (SET-X (* (+ X 3) (- 4 Y))) (SET-Y (+ X (- Y 1))))Because S-expressions are a compact way of expressing subtrees, parse trees are often written using S-expressions (as we do in Section 3), and we can think of the parse trees learned by genetic programmingas being Lisp S-expressions.For genetic programming, the user de�nes all the possible functions, variables and constants that can beused as nodes in a parse tree. Variables, constants, and functions which take no arguments are the leavesof the possible parse trees and hence are called \terminals". Functions which do take arguments, and4

www.manaraa.com

therefore are the branches of the possible parse trees, are called \non-terminals". The set of all terminalsis called the \terminal set", and the set of all non-terminals is called the \non-terminal set".[An aside on terminology: We use the term \non-terminal" to describe what Koza [92] calls a \function".This is because a terminal can be what standard computer science nomenclature would call a \function",i.e. a subroutine that returns a value.]An important constraint on the user-de�ned terminals and non-terminals is called closure. Closure meansthat all these elements take arguments of a single data type (e.g., a scalar) and return values of this samedata type. This implies that all elements return values that can be used as arguments for any element;hence, any element can be a child node in a parse tree for any other element without having conictingdata types. Koza [92] describes a way to relax this constraint of closure with the concept of \constrainedsyntactic structures". He uses tree generation routines which only generate legal trees and uses operatorswhich maintain legal syntactic structure. STGP, which is the focus of this paper, builds on and generalizesthis concept.The search space is the set of all parse trees which use only elements of the non-terminal set and terminalset and which are legal (i.e., have the right number of arguments for each function) and which are less thansome maximum depth. This limit on the maximum depth is a parameter which keeps the search space�nite and prevents trees from growing to an excessively large size.(2) Evaluation Function - The evaluation function consists of executing the program de�ned by theparse tree and scoring how well the results of this execution match the desired results. The user mustsupply the function which assigns a numerical score to how well a set of derived results matches the desiredresults.(3) Initialization Procedure - Koza [92] de�nes two di�erent ways of generating a member of the initialpopulation, the \full" method and the \grow" method. For a parse tree generated by the full method, thelength along any path from the root to a leaf is the same nomatter which path is taken, i.e. the tree is offull depth along any path. Parse trees generated by the grow method need not satisfy this constraint. Forboth methods, each tree is generated recursively using the following algorithm described in pseudo-code:Generate_Tree(max_depth, generation_method)beginif max_depth = 1 thenset the root of the tree to a randomly selected terminal;else if generation_method = full thenset the root of the tree to a randomly selected non-terminal;elseset the root to a randomly selected element which is eitherterminal or non-terminal;for each argument of the root, generate a subtree with the callGenerate_Tree(max_depth - 1, generation_method);end;The standard approach of Koza to generating an initial population is called \ramped-half-and-half". It5

www.manaraa.com

+

-

4 Y

3

-

*

X +

Y 3

+

crossover

X Y

+

-

4 Y

*

X Y

mutation

+

X

-

4 Y

+

+

Y 3

+

-

4 Y

2 4

*

* +

Y YFigure 4: Mutation and crossover for genetic programming.uses the full method to generate half the members and the grow method to generate the other half. Themaximum depth is varied between two and MAX-INITIAL-TREE-DEPTH. This approach generates treesof all di�erent shapes and sizes.(4)Genetic Operators - Like a standard genetic algorithm, the two main genetic operators are mutationand crossover (although Koza [92] claims that mutation is generally unnecessary). However, because of thetree-based representation, these operators must work di�erently from the standard mutation and crossover.Mutation works as follows: (i) randomly select a node within the parent tree as the mutation point, (ii)generate a new tree of maximum depth MAX-MUTATION-TREE-DEPTH, (iii) replace the subtree rootedat the selected node with the generated tree, and (iv) if the maximum depth of the child is less than orequal to MAX-TREE-DEPTH, then use it. (If the maximum depth is greater than MAX-TREE-DEPTH,then one can either use the parent (as Koza does) or start again from scratch (as we do).) The mutationprocess is illustrated in Figure 4.Crossover works as follows: (i) randomly select a node within each tree as crossover points, (ii) take thesubtree rooted at the selected node in the second parent and use it to replace the subtree rooted at theselected node in the �rst parent to generate a child (and optionally do the reverse to obtain a second child),and (iii) use the child if its maximum depth is less than or equal to MAX-TREE-DEPTH. The crossoverprocedure is illustrated in Figure 4.(5)Parameters - There are some parameters associated with genetic programming beyond those used withstandard genetic algorithms. MAX-TREE-DEPTH is the maximum depth of any tree. MAX-INITIAL-TREE-DEPTH is the maximum depth of a tree which is part of the initial population. MAX-MUTATION-TREE-DEPTH is the maximum depth of a subtree which is generated by the mutation operator as thepart of the child tree not in the parent tree. 6

www.manaraa.com

2 Strongly Typed Genetic Programming (STGP)We now discuss an extension of the basic genetic programming approach, called strongly typed geneticprogramming (STGP), which is a generalization of Koza's constrained syntactic structures. The keycontribution of STGP is that it eliminates the closure constraint described above and hence allows functionswhich take arguments of any data type and return values of any data type. In its simplest form, STGPdoes this by requiring that each function specify precisely the data types of its arguments and its returnedvalues (i.e., that the functions be \strongly typed"). STGP can then ensure that all the parse trees itgenerates satisfy the constraint that the arguments to all functions are of the correct type. With theconcept of generics, STGP allows signi�cant relaxation of the need to specify data types precisely; instead,these data types can be of a broad class and speci�ed precisely by the context.Section 2.1 discusses the details of the extensions from basic genetic programming needed to ensure thatall the argument types are correct. Section 2.2 describes a key concept for making STGP easier to use,generic functions, which are not true strongly typed functions but rather templates for classes of stronglytyped functions. Section 2.3 discusses generic data types, which are classes of data types. Section 2.4examines a special data type, called the \VOID" data type, which indicates that no data is returned.Section 2.5 describes the concept of local variables in STGP. Section 2.6 tells how STGP handles errors.Finally, Section 2.7 discusses how our work on STGP has started laying the foundations for a new computerlanguage which is particularly suited for automatic programming.Note that a di�erent approach to extending genetic programming to allow for di�erent data types is thestack-based approach described in [Perkis 93]. In this approach, di�erent data types are stored on di�erentstacks and manipulated di�erently based on their being on di�erent stacks as opposed to STGP's methodof reasoning about legality based on data types.2.1 The BasicsWe now discuss in detail the changes from standard genetic programming for each genetic algorithmcomponent:(1) Representation - In STGP, unlike in standard genetic programming, each variable and constant hasan assigned type. For example, the constants 2:1 and � have the type FLOAT, the variable V 1 might havethe type VECTOR-3 (indicating a three-dimensional vector), and the variable M2 might have the typeMATRIX-2-2 (indicating a 2x2 matrix).Furthermore, each function has a speci�ed type for each argument and for the value it returns. Figure 5shows a variety of strongly typed functions with their argument types and returns types. For those readersnot familiar with Lisp, CAR is a function which takes a list and returns the �rst element [Steele 84]. InSTGP, unlike in Lisp, a list must contain elements all of the same type so that the return type of CAR (andother functions returning an element of the list) can be deduced. (Note that below we will describe genericfunctions, which provide a way to de�ne a single function instead of many functions which do essentiallythe same operation, e.g.DOT-PRODUCT instead of DOT-PRODUCT-i for i di�erent values.)To handle multiple data types, the de�nition of what constitutes a legal parse tree has a few additional7

www.manaraa.com

DOT-PRODUCT-3 VECTOR-3 FLOAT
VECTOR-3

VECTOR-ADD-2

MAT-VEC-MULT-4-3

CAR-FLOAT

IF-THEN-ELSE-INT

LENGTH-VECTOR-4

VECTOR-2
VECTOR-2

MATRIX-4-3
VECTOR-3

VECTOR-2

VECTOR-4

LIST-OF-FLOAT FLOAT

LIST-OF-VECTOR-4 INTEGER

BOOLEAN
INTEGER
INTEGER

INTEGER

Function Name Arguments Return Type

Figure 5: Some strongly typed functions with their argument types and return types.
SCALAR-VEC-MULT-3

DOT-PRODUCT-2 VECTOR-ADD-3

V3 V3 V1 V2

1

2

3 4

5

6 7Figure 6: An example of a legal tree for return type VECTOR-3.criteria beyond those required for standard genetic programming, which are: (i) the root node of the treereturns a value of the type required by the problem, and (ii) each non-root node returns a value of thetype required by the parent node as an argument. These criteria for legal parse trees are illustrated by thefollowing example:Example 1 Consider a non-terminal setN = fDOT-PRODUCT-2, DOT-PRODUCT-3, VECTOR-ADD-2, VECTOR-ADD-3, SCALAR-VEC-MULT-2, SCALAR-VEC-MULT-3g and a terminal set T = fV1, V2,V3g, where V1 and V2 are variables of type VECTOR-3 and V3 is a variable of type VECTOR-2. Let therequired return type be VECTOR-3. Then, Figure 6 shows an example of a legal tree. Figure 7 shows twoexamples of illegal trees, the left tree because its root returns the wrong type and the right tree becausein three places the argument types do not match the return types.(2) Evaluation Function - There are no changes to the evaluation function.(3) Initialization Procedure - The one change to the initialization procedure is that, unlike in standardgenetic programming, there are type-based restrictions on which element can be chosen at each node. One8

www.manaraa.com

SCALAR-VEC-MULT-2

DOT-PRODUCT-3 VECTOR-ADD-2

V1 V1 V3 V3

1

2

3 4

5

6 7

SCALAR-VEC-MULT-3

VECTOR-ADD-2 VECTOR-ADD-3

V1 V3 V1 V3

1

2

3 4

5

6 7Figure 7: Two examples of illegal trees for return type VECTOR-3.restriction is that the element chosen at that node must return the expected type (which for the root nodeis the expected return type for the tree and for any other node is the argument type for the parent node).A second restriction is that, when recursively selecting nodes, we cannot select an element which makes itimpossible to select legal subtrees. (Note that if it is impossible to select any tree for the speci�ed depthand generation method, then no tree is returned, and the initialization procedure proceeds to the nextdepth and generation method.) We discuss this second restriction in greater detail below but �rst give anexample of this tree generation process.Example 2 Consider using the full method to generate a tree of depth 3 returning type VECTOR-3using the terminal and non-terminal sets of Example 1. We now give a detailed description of the decisionprocess that would generate the tree in Figure 6. At point 1, it can choose either SCALAR-VEC-MULT-3or VECTOR-ADD-3, and it chooses SCALAR-VEC-MULT-3. At point 2, it can choose either DOT-PRODUCT-2 or DOT-PRODUCT-3 and chooses DOT-PRODUCT-2. At points 3 and 4, it can onlychoose V3, and it does. At point 5, it can only choose VECTOR-ADD-3. (Note that there is no tree ofdepth 2 with SCALAR-VEC-MULT-3 at its root, and hence SCALAR-VEC-MULT-3 is not a legal choiceeven though it returns the right type.) At points 6 and 7, it can choose either V1 or V2 and chooses V1for point 6 and V2 for point 7.Regarding the second restriction, we observe that a non-terminal element can be the root of a tree ofmaximum depth i if and only if all of its argument types can be generated by trees of maximum depthi � 1. To check this condition e�ciently, we use \types possibilities tables", which we generate beforegenerating the �rst tree. Such a table tells for each i = 1,...,MAX-INITIAL-TREE-DEPTH what are thepossible return types for a tree of maximum depth i. There will be two di�erent types possibilities tables,one for trees generated by the full method and one for the grow method. Example 4 below shows thatthese two tables are not necessarily the same. The following is the algorithm in pseudo-code for generatingthese tables.-- the trees of depth 1 must be a single terminal elementloop for all elements of the terminal setif table_entry(1) does not yet contain this element's typethen add this element's type to table_entry(1);end loop;loop for i = 2 to MAX_INITIAL_TREE_DEPTH9

www.manaraa.com

-- for the grow method trees of size i-1 are also valid trees of size iif using the grow methodthen add all the types from table_entry(i-1) to table_entry(i);loop for all elements of the non-terminal setif this element's argument types are all in table_entry(i-1) andtable_entry(i) does not contain this element's return typethen add this element's return type to table_entry(i);end loop;end loop;Example 3 For the terminal and non-terminal sets of Example 1, the types possibilities tables for boththe full and grow method aretable_entry(1) = { VECTOR-2, VECTOR-3 }table_entry(i) = { VECTOR-2, VECTOR-3, FLOAT } for i > 1Note that in Example 1, when choosing the node at point 5, we would have known that SCALAR-VEC-MULT-3 was illegal by seeing that FLOAT was not in the table entry for depth 1.Example 4 Consider the case when N = fMAT-VEC-MULT-3-2, MAT-VEC-MULT-2-3, MATRIX-ADD-2-3, MATRIX-ADD-3-2g and T = fM1, M2, V1g, where M1 is of type MATRIX-2-3, M2 is of typeMATRIX-3-2, and V1 is of type VECTOR-3. Then, the types possibilities tables for the grow method istable_entry(1) = { VECTOR-3, MATRIX-3-2, MATRIX-2-3 }table_entry(i) = { VECTOR-2, VECTOR-3, MATRIX-3-2, MATRIX-2-3 } for i > 1and the types possiblities table for the full method istable_entry(i) = { VECTOR-3, MATRIX-3-2, MATRIX-2-3 } for i oddtable_entry(i) = { VECTOR-2, MATRIX-3-2, MATRIX-2-3 } for i even(4)Genetic Operators - The genetic operators, like the initial tree generator, must respect the enhancedlegality constraints on the parse trees. Mutation uses the same algorithm employed by the initial treegenerator to create a new subtree which returns the same type as the deleted subtree and which has internalconsistency between argument types and return types (see Figure 8). If it is impossible to generate sucha tree, then the mutation operator returns either the parent or nothing.Crossover now works as follows. The crossover point in the �rst parent is still selected randomly from all thenodes in the tree. However, the crossover point in the second parent must be selected so that the subtreereturns the same type as the subtree from the �rst parent. Hence, the crossover point is selected randomlyfrom all nodes satisfying this constraint (see Figure 9). If there is no such node, then the crossover operatorreturns either the parents or nothing.(5) Parameters - There are no changes to the parameters.10

www.manaraa.com

SCALAR-VEC-MULT-3

DOT-PRODUCT-2 SCALAR-VEC-MULT-3

DOT-PRODUCT-3 V1V3 V3

V2 V2

mutation
SCALAR-VEC-MULT-3

DOT-PRODUCT-2 VECTOR-ADD-3

V3 V3 V1 V2Figure 8: Mutation for STGP.
SCALAR-VEC-MULT-3

DOT-PRODUCT-2 SCALAR-VEC-MULT-3

DOT-PRODUCT-3 V1V3 V3

V2 V2

SCALAR-VEC-MULT-3

DOT-PRODUCT-2 VECTOR-ADD-3

V3 V3 V1 V2

SCALAR-VEC-MULT-3

DOT-PRODUCT-3 V1

V2 V2

VECTOR-ADD-3

V2

crossover

Figure 9: Crossover for STGP.11

www.manaraa.com

DOT-PRODUCT VECTOR-i FLOAT
VECTOR-i

VECTOR-ADD

MAT-VEC-MULT

CAR

IF-THEN-ELSE

LENGTH

VECTOR-i
VECTOR-i

MATRIX-i-j
VECTOR-j

VECTOR-i

VECTOR-i

LIST-OF-t t

LIST-OF-t INTEGER

BOOLEAN
t
t

t

Function Name Arguments Return Type

Figure 10: Some generic functions with their argument types and return types. Here, i and j are arbitraryintegers and t is an arbitrary data type.2.2 Generic FunctionsThe examples above illustrate a major inconvenience of the basic STGP formulation, the need to specifymultiple functions which perform the same operation on di�erent types. For example, it is inconvenientto have to specify both DOT-PRODUCT-2 and DOT-PRODUCT-3 instead of a single function DOT-PRODUCT. To eliminate this inconvenience, we introduce the concept of a \generic function". A genericfunction is a function which can take a variety of di�erent argument types and, in general, return values ofa variety of di�erent types. The only constraint is that for any particular set of argument types a genericfunction must return a value of a well-de�ned type. Specifying a set of argument types (and hence alsothe return type) for a generic function is called \instantiating" the generic function.Some examples of generic functions are shown in Figure 10. Note how in each case specifying the argumenttypes precisely allows one to deduce the return type precisely. For example, specifying that CAR's argumentis of type LIST-OF-FLOAT implies that its returned value is of type FLOAT, or specifying that MAT-VEC-MULT's arguments are of type MATRIX-3-2 and VECTOR-2 implies that its returned value is oftype VECTOR-3.To be in a parse tree, a generic function must be instantiated. Once instantiated, an instance of a genericfunction keeps the same argument types even when passed from parent to child. Hence, an instantiatedgeneric function acts exactly like a standard strongly typed function. A generic function gets instantiatedduring the process of generating parse trees (for either initialization or mutation). Note that there can bemultiple instantiations of a generic function in a single parse tree.Because generic functions act like standard strongly typed functions once instantiated, the only changes tothe STGP algorithm needed to accomodate generic functions are for the tree generation procedure. There12

www.manaraa.com

are three such changes required.First, during the process of generating the types possibilities tables, recall that for standard non-terminalfunctions we needed just check that each of its argument types was in the table entry for depth i � 1 inorder to add its return type to the table entry for depth i. This does not work for generic functions becauseeach generic function has a variety of di�erent argument types and return types. For generic functions,this step is replaced with the following:loop over all ways to combine the types from table_entry(i-1) intosets of argument types for the functionif the set of arguments types is legaland the return type for this set of argument types is not intable_entry(i)then add the return type to table_entry(i);end loop;The second change is during the tree generation process. Recall that for standard functions, when decidingwhether a particular function could be child to an existing node, we could independently check whether itreturns the right type and whether its argument types can be generated. However, for generic functionswe must replace these two tests with the following single test:loop over all ways to combine the types from table_entry(i-1) intosets of argument types for the functionif the set of arguments types is legaland the return type for this set of argument types is correctthen return that this function is legal;end loop;return that this function is not legal;The third change is also for the tree generation process. Note that there are two types of generic functions,ones whose argument types are fully determined by selection of their return types and ones whose argumenttypes are not fully determined by their return types. We call the latter \generic functions with freearguments". Some examples of generic functions with free arguments are DOT-PRODUCT and MAT-VEC-MULT, while some examples of generic functions without free arguments are VECTOR-ADD andSCALAR-VEC-MULT. When we select a generic function with free arguments to be a node in a tree, itsreturn type is determined by its parent node (or if it is at the root position, by the required tree type), butthis does not fully specify its argument types. Therefore, to determine its arguments types and hence thereturn types of its children nodes, we must use the types possibilities table to determine all the possiblesets of argument types which give rise to the determined return type (there must be at least one such setfor this function to have been selected) and randomly select one of these sets.Example 5 Using generic functions, we can rewrite the non-terminal set from Example 1 in a morecompact form: N = fDOT-PRODUCT, VECTOR-ADD, SCALAR-VEC-MULTg. Recall that T = fV1,13

www.manaraa.com

SCALAR-VEC-MULT

DOT-PRODUCT

V3 V3

1

2

3 4

VECTOR-ADD

V1 V2

5

6 7Figure 11: A legal tree using generic functions.V2, V3g, where V1 and V2 are type VECTOR-3, and V3 is type VECTOR-2. The types possibilities tablesare still as in Example 3. Figure 11 shows the equivalent of the tree in Figure 6. To generate the treeshown in Figure 11 as an example of a full tree of depth 3, we go through the following steps. At point 1,we can select either VECTOR-ADD or SCALAR-VEC-MULT, and we choose SCALAR-VEC-MULT. Atpoint 2, we must select DOT-PRODUCT. Because DOT-PRODUCT has free arguments, we must select itsargument types. Examining the types possibilities table, we see that the pairs (VECTOR-2, VECTOR-2)and (VECTOR-3, VECTOR-3) are both legal. We randomly select (VECTOR-2, VECTOR-2). Then,points 3 and 4 must be of type VECTOR-2 and hence must be V3. Point 5 must be VECTOR-ADD.(SCALAR-VEC-MULT is illegal because FLOAT is not in the types possibilities table entry for depth 1.)Points 6 and 7 can both be either V1 or V2, and we choose V1 for point 6 and V2 for point 7.2.3 Generic Data TypesA generic data type is not a true data type but rather a set of possible data types. Examples of genericdata types are VECTOR-GENNUM1, which represents a vector of arbitrary dimension, and GENTYPE2,which represents an arbitrary type. Generic data types are treated di�erently during tree generation thanduring tree execution. When generating new parse trees (either while initializing the population or duringreproduction), the quantities such as GENNUM1 and GENTYPE2 are treated like algebraic quantites.Examples of how generic data types are manipulated during tree generation are shown in Figure 12.During execution, the quantities such as GENNUM1 and GENTYPE2 are given speci�c values based onthe data used for evaluation. For example, if in the evaluation data, we choose a particular vector of typeVECTOR-GENNUM1 to be a two-dimensional vector, then GENNUM1 is equal to two for the purpose ofexecuting on this data. The following two examples illustrate generic data types.Example 6 Consider the same terminal set T = fV1, V2, V3g and non-terminal set N = fDOT-PRODUCT, VECTOR-ADD, SCALAR-VEC-MULTg as in Example 5. However, we now set V1 andV2 to be of type VECTOR-GENNUM1, V3 to be of type VECTOR-GENNUM2, and the return type forthe tree to be VECTOR-GENNUM1. It is still illegal to add V1 and V3 because they are of di�erentdimensions, while it is still legal to add V1 and V2 because they are of the same dimension. In fact, theset of all legal parse trees for Example 5 is the same as the set of legal parse trees for this example. Thedi�erence is that in Example 5, when providing data for the evaluation function, we were constrained tohave V1 and V2 of dimension 3 and V3 of dimension 2. In this example, when providing examples, V1,V2 and V3 can be arbitrary vectors as long as V1 and V2 are of the same dimension.14

www.manaraa.com

VECTOR-GENNUM2VECTOR-ADD

CAR

VECTOR-3

LIST-OF-GENTYPE3

Function Arguments Return Type

VECTOR-GENNUM2
VECTOR-GENNUM2

VECTOR-GENNUM2VECTOR-ADD
different dimensions

illegal

VECTOR-ADD VECTOR-GENNUM2
VECTOR-GENNUM1 different dimensions

illegal

VECTOR-ADD GENTYPE1
GENTYPE1

illegal
not vectors

GENTYPE3

CAR GENTYPE3 illegal, not a list

IF-THEN-ELSE BOOLEAN
GENTYPE3
GENTYPE3

GENTYPE3Figure 12: Some examples of how generic data types are manipulated.Example 7 Consider the same terminal and non-terminal sets as Examples 5 and 6. However, we nowspecify that V1 is of type VECTOR-GENNUM1, V2 is of type VECTOR-GENNUM2, and V3 is of typeVECTOR-GENNUM3. Now, it is not only illegal to add V1 and V3, but it is also illegal to add V1 andV2, even if V1 and V2 both happen to be of type VECTOR-3 (i.e., GENNUM1 = GENNUM2 = 3) in thedata provided for the evaluation function. In fact, the majority of the trees legal for Examples 5 and 6 areillegal for this example, including that in Figure 11.One reason to use generic data types is to eliminate operations which are legal for a particular set ofdata used to evaluate performance but which are illegal for other potential sets of data. Some examplesare the function NTH discussed in Section 3.4 and the function MAPCAR discussed in Section 3.5. Forthe evaluation functions, we only use lists of type LIST-OF-FLOAT. Without generic data types, we canperform operations such as (+ (CAR L) (CAR L)). However, both NTH and MAPCAR should work onany list including lists of types such as LIST-OF-STRING and LIST-OF-LIST-OF-FLOAT, and hence theexpression (+ (CAR L) (CAR L)) should be illegal. With generic data types, for the purpose of generatingtrees, the lists are of type LIST-OF-GENTYPE1, and this expression is illegal.Another advantage of using generic data types is that by eliminating certain operations it reduces the sizeof the search space, often by a large factor. Smaller search spaces mean less time required for the search.With noisy evaluation functions, smaller search spaces also help with the problem of \over�tting," i.e.�tting the solution to model the random noise in the evaluation data in addition to the \signal" (which isa problem which arises in the Kalman �lter example described in Section 3.3).A third reason to use generic data types is that, when using generic data types, the functions that arelearned during genetic programming are generic functions. To see what this means, note that in each of15

www.manaraa.com

variable 2's typeSET-VARIABLE-2

DOTIMES INTEGER

Function Arguments Returns

VOID

FLOATTURN-RIGHT

EXECUTE-TWO

VOID

VOID
t

t

VOID
VOIDFigure 13: Some examples of functions which use the VOID data type.the examples of Section 3, we are learning a function which, like any other STGP function takes typedarguments and returns a typed value. For example, NTH is a function which takes as arguments a listand an integer and returns a value whose type is that of the elements of the list, while GENERALIZED-LEAST-SQUARES is a function which takes a matrix and a vector as arguments and returns a vector.Without generic data types, these functions STGP learns are non-generic functions, taking fully speci�eddata types for arguments and returning a value of a fully speci�ed data type. (For example, NTHmight takea LIST-OF-FLOAT and an INTEGER as arguments and return a FLOAT.) However, all these functionsshould instead be generic functions (e.g., NTH should take a LIST-OF-t and an INTEGER and return a t,where t is an arbitrary type), and using generic data types makes this possible. This becomes particularlyimportant when we start using the learned functions as building blocks for higher-level functions.2.4 The VOID Data TypeThere is a special data type which indicates that a particular subroutine is a procedure rather than afunction, i.e. returns no data. We call this data type \VOID" to be consistent with C and C++, which usethis same special data type for the same purpose [Kernighan and Ritchie 78]. Such procedures act onlyvia their side e�ects, i.e. by changing some internal state.Some examples of functions that have arguments and/or returned values of type VOID are shown inFigure 13. SET-VARIABLE-2 has the e�ect of changing a local variable's value (see Section 2.5). TURN-RIGHT has the e�ect of making some agent such as a robot or a simulated ant turn to the right acertain angle. EXECUTE-TWO executes two subtrees in sequence and returns the value from the secondone. DOTIMES executes its second subtree a certain number of times in succession, with the number ofexecutions determined by the value returned from the �rst subtree.Instead of having EXECUTE-TWO and DOTIMES both take VOIDs as arguments, we could have hadthem take arbitrary types as arguments. The philosophy behind our choice to use VOID's is that thevalues of these arguments are never used; hence, the only e�ect of these arguments are their side e�ects.While a function may both return a value and have side e�ects, if it is ever useful to just execute the sidee�ects of this function then there should be a separate procedure which just executes these side e�ects.Eliminating from parse trees the meaningless operations involved with computing values and then notusing them reduces the size of the search space. 16

www.manaraa.com

0.0FLOAT

VECTOR-i all entries 0.0

Type Value

0INTEGER

LIST-OF-t empty listFigure 14: Default values for di�erent variable types.Additionally, generic functions which handle arbitrary types can also handle type VOID. For example,IF-THEN-ELSE can take VOID's as its second and third arguments and return a VOID.2.5 Local VariablesMost high-level programming languages provide local variables, which are slots where data can be storedduring the execution of a subroutine. STGP also provides local variables. Like the terminal and non-terminal sets, the local variables and their types have to be speci�ed by the user. For example, the usermight specify that variable 1 has type VECTOR-GENNUM1 and variable 2 has type INTEGER.For any local variable i, there are two functions automatically de�ned: SET-VAR-i takes one argumentwhose type is the same as that of variable i and returns type VOID, while GET-VAR-i takes no argumentsand returns type the same as that of variable i. In fact, the only e�ect of specifying a local variable is tode�ne these two functions and add GET-VAR-i to the terminal set and SET-VAR-i to the non-terminalset. SET-VAR-i sets the value of variable i equal to the value returned from the argument. GET-VAR-ireturns the value of variable i, which is the last value it was set to or, if variable i has not yet been set,is the default value for variable i's type. Figure 14 shows some of the default values we have chosen fordi�erent types.2.6 Run-Time ErrorsSTGP avoids one important type of error, that of mismatched types, by using strong typing to ensurethat all types are consistent. However, there are other types of errors which occur when executing aparse tree, which we call \run-time errors". Our implementation of STGP handles run-time errors asfollows. Functions which return values (i.e., non-VOID functions) always return pointers to the data.When a function gets an error, it instead returns a NULL pointer. Functions which return type VOID, i.e.procedures, also signal errors by returning a NULL pointer and signal successful operation by returningan arbitrary non-NULL pointer. When one of the arguments of a function returns a NULL pointer, thisfunction stops executing and returns a NULL pointer. In this way, errors get passed up the tree.The function which initially detects the error sets a global variable (analogous to the UNIX global variable\errno") to indicate the type of error. The reason the function needs to specify the type of error is sothat the evaluation function can use this information. For example, in the unprotected version of the NTHfunction (see Section 3.4), when the argument N speci�es an element beyond the end of the list, then a17

www.manaraa.com

Bad-List-Element error (see below) is the right response but a Too-Much-Time error is a bad response.Eventually, we would also like to make the error type available to functions in the tree. For example, wecould de�ne a function ERROR-TYPE which returns the type of error and use it it as part of a terminalset.The current error types are:Inversion-Of-Singular-Matrix: The MATRIX-INVERSE function performs a Gaussian eliminationprocedure. During this procedure, if a column has entries with absolute values all less than some verysmall value �, then the inversion fails with this error type.Note that this is a very common error when doing matrix manipulation because it is easy to generatesquare matrices with rank less than their dimension. For example, if A is an mxn matrix with m < n, thenATA is an nxn matrix with rank � m and hence is singular. Likewise, if m > n, AAT is an mxm matrixwith rank � n and hence is singular. Furthermore, (AAT)�1A and A(ATA)�1 have the same dimensionas A and hence can be used in trees any place A can (disregarding limitations on maximum depth).Also note that at one point we used a protected inversion which, analogous to Koza's protected division,returned the identity matrix when attempting to invert a singular matrix. However, this had two problems.First, when all the examples in the evaluation data yield a singular matrix, then a protected inversion ofthis matrix generally yields incorrect results for cases when the matrix is nonsingular. For example, inthe evaluation data of the least squares example (see Section 3.2), we chose A to have dimensions 20x3.Optimizing to this value of A yields expressions with extra multiplications by (AAT)�1 included. Theproblem is that this expression is also supposed to be optimal when A is a square matrix and hence AAT is(generally) invertible, which is not the case with these extra multiplications included. The second problemis that, when all the examples in the evaluation data yield a nonsingular matrix, then a protected inversionof this matrix generally yields incorrect results for cases when the matrix is singular. As an example, againconsider the least squares problem. When ATA is singular, then there are multiple optimal solutions. Theright thing in this case may be to return one of these solutions or may be to raise an error, but a protectedinversion will do neither of these.Bad-List-Element: Consider taking the CAR (i.e., �rst element) of an empty list. In Lisp, taking theCAR of NIL (which is the empty list) will return NIL. The problem with this for STGP is that of typeconsistency; CAR must return data of the same type as the elements of the list (e.g., must return a FLOATif the list is of type LIST-OF-FLOAT). There are two alternative ways to handle this: �rst, raise an error,and second, have a default value for each possible type. For reasons similar to those given for not usingprotected matrix inversion, we choose to return an error rather than have a protected CAR.Note that CAR is not the only function which can have this type of error. For example, the unprotectedversion of the function NTH (see Section 3.4) raises this error when the argument N is � the length of theargument L.Division-By-Zero: We do not use scalar division in any of our examples and hence do not use this errortype. We include this just to show that there is an alternative to the protected division used by Koza,which returns 1 whenever division by zero is attempted.Too-Much-Time: Certain trees can take a long time to execute and hence to evaluate, particularly18

www.manaraa.com

those trees with many nested levels of iteration. To ensure that the evaluation does not get bogged downevaluating one individual, we place a problem-dependent limit on the maximum amount of time allowedfor an evaluation. Certain functions check whether this amount of time has elapsed and, if so, raise thiserror. Currently, DOTIMES and MATRIX-INVERSE are the only functions which perform this check.DOTIMES does this check before each time executing the loop body, while MATRIX-INVERSE does thischeck before performing the inversion.2.7 STGP's Programming LanguageIn the process of de�ning STGP, we have taken the �rst steps towards de�ning a new programminglanguage. This language is a cross between Ada and Lisp. The essential ingredient it takes from Ada is theconcept of strong typing and the concept of generics as a way of making strongly typed data and functionspractical to use [Barnes 82]. The essential ingredient it takes from Lisp is the concept of having programsbasically be their parse trees [Steele 84]. The resulting language might best be considered a strongly typedLisp. [Note that it is important here to distinguish between a language and its parser. While the underlyinglearning mechanism (the analog of a compiler) for standard genetic programming can be written in anylanguage, the programs being learned are Lisp programs. Similarly, while the learning mechanism forSTGP can be written in any language, the programs being manipulated are in this hybrid language.]There are reasons why a strongly typed Lisp is a good language not only for learning programs using geneticalgorithms but also for any type of automatic learning of programs. Having the programs be isomorphicto their parse trees makes the programs easy to create, revise and recombine. This not only makes iteasy to de�ne genetic operators to generate new programs but also to de�ne other methods of generatingprograms. Strong typing makes it easy to ensure that the automatically generated programs are actuallylegal programs. The standard dynamically typed Lisp relies on the abilities of human programmers toensure that all data types are manipulated legally. This in turn relies on the human programmers to\understand" the functions they call and/or to \read the documentation". A more formal approach isrequired to allow automatic programming techniques, which often rely on large amounts of computationrather than understanding, to generate legal trees. The ability to de�ne such a formal approach is providedby strong typing.3 ExperimentsWe now discuss four problems to which we have applied STGP. Multi-dimensional least squares regression(Section 3.2) and the multi-dimensional Kalman �lter (Section 3.3) are two problems involving vector andmatrix manipulation. The function NTH (Section 3.4) and the function MAPCAR (Section 3.5) are twoproblems involving list manipulation. However, before discussing these four experiments, we �rst describethe genetic algorithm we used for these experiments.19

www.manaraa.com

3.1 The Genetic AlgorithmThe genetic algorithm we used di�ers from a \standard" genetic algorithm in some ways which are not dueto the use of trees rather than strings as chromosomes. We now describe these di�erences so that readerscan best analyze and (if desired) reproduce the results.The code used for this genetic algorithm is a C++ translation of an early version of OOGA [Davis 91]. Oneimportant distinction of this genetic algorithm is its use of steady-state replacement [Syswerda 89] ratherthan generational replacement for performing population updates. This means that for each generationonly one individual (or a small number of individuals) is generated and placed in the population ratherthan generating a whole new population. The bene�t of steady-state replacement is that good individualsare immediately available as parents during reproducation rather than waiting to use them until the restof the population has been evaluated, hence speeding up the progress of the genetic algorithm. Whenusing steady-state replacement, it does not make sense to report run durations as a number of generationsbut rather as the total number of evaluations performed. Comparisons of results between di�erent geneticalgorithms should be made in units of number of evaluations. (Since steady-state genetic algorithms canbe parallelized [Montana 91], such a comparison is fair.)A second important features of this code is the use of exponential �tness normalization [Cox, Davis and Qiu 91].This means that, when selecting parents for reproduction, (i) the probability of selecting any individual de-pends only on its relative rank in the population and (ii) the probability of selecting the nth best individualis Parent-Scalar times that of selecting the (n� 1)st best individual. Here, Parent-Scalar is a parameter ofthe genetic algorithm which must be < 1. An important bene�ts of exponential �tness normalization is theability to simply and precisely control the rate of convergence via the choice of values for the populationsize and the parent scalar. Controlling the convergence rate is important to avoid both excessively longruns and runs which converge prematurely to a non-global optimum. The e�ect of the population sizeand the parent scalar on convergence rate is detailed in [Montana 94]. For the purposes of this paper, itis enough to note that increasing the population size and increasing the parent scalar each slow down theconvergence rate.3.2 Multi-Dimensional Least Squares RegressionProblem Description: The multi-dimensional least squares regression problem can be stated as follows.For an mxn matrix A with m � n and an m-vector B, �nd the n-vector X which minimizes the quantity(AX � B)2. This problem is known to have the solutionX = (ATA)�1ATB (1)where (ATA)�1AT is called the \pseudo-inverse" of A [Campbell and Meyer 1979]. Note that this is ageneralization of the linear regression problem, given m pairs of data (xi; yi), �nd m and b such that theline y = mx+ b gives the best least-squares �t to the data. For this special case,A = 264 x1 1::: :::xm 1 375 B = 264 y1:::ym 375 X = " mb # (2)20

www.manaraa.com

Output Type: The output has type VECTOR-GENNUM1.Arguments: The argument A has type MATRIX-GENNUM2-GENNUM1, and the argument B has typeVECTOR-GENNUM2.Local Variables: There are no local variables.Terminal Set: T = fA;BgNon-Terminal Set: We use two non-terminal setsN1 = fMATRIX TRANSPOSE;MATRIX INVERSE;MAT VEC MULT;MAT MAT MULTg (3)N2 = fMATRIX TRANSPOSE;MATRIX INVERSE;MAT VEC MULT;MAT MAT MULT;MATRIX ADD;MATRIX SUBTRACT;VECTOR ADD;VECTOR SUBTRACT;DOT PRODUCT; SCALAR VEC MULTg (4)The �rst is the minimal non-terminal set necessary to solve the problem.Evaluation Function: We used a single data point for the evaluation function. Because this is a deter-ministic problem which has a solution which does not have multiple cases, a single data point is in theoryall that is required. For this data point, we chose GENNUM1=3 and GENNUM2=20, so that A was a20x3 matrix and B was a 20-vector. The entries of A and B were selected randomly. The score for aparticular tree was (AX � B)2, where X is the 3-vector obtained by executing the tree.Genetic Parameters: We chose MAX-INITIAL-DEPTH to be 6 and POPULATION-SIZE to be 50 and2000 respectively for the two di�erent non-terminal sets. Other parameters were irrelevant because anoptimal solution was always found in the initial population.Results: We ran STGP ten times with non-terminal set N1 (and population size 50) and ten times withnon-terminal set N2 (and population size 2000). Every time at least one optimal soluation was found aspart of the initial population. With N1, there was an average of 2:9 optimal parse trees in the initialpopulation of 50. Of the 29 total optimal trees generated over 10 runs, there were 14 distinct optimaltrees. (Note that because we are using a steady-state genetic algorithm there can be no duplicate treesin any one run.) In the second case, there was an average of 4.6 optimal trees in the initial population of2000.We now look at a sampling of some of these optimal parse trees The two with the minimum number ofnodes (written as S-expressions) are:(1) (MAT-VEC-MULT (MATRIX-INVERSE (MAT-MAT-MULT (MATRIX-TRANSPOSE A) A))(MAT-VEC-MULT (MATRIX-TRANSPOSE A) B))(2) (MAT-VEC-MULT (MAT-MAT-MULT(MATRIX-INVERSE (MAT-MAT-MULT (MATRIX-TRANSPOSE A) A))(MATRIX-TRANSPOSE A))B)Tree 1, in addition to having the minimum number of nodes, also has the minimum depth, 5. It is the only21

www.manaraa.com

(a) Grow (b) Full

Max
Depth

Legal
Trees

GP
Trees

Fraction
Legal

1 0 2 0.0
2 0 38 0.0
3 3 11630 2.6e-4
4 164 1.1e9 1.5e-7
5 2.9e5 9.4e18 3.1e-14

6 8.9e11 7.0e38 1.3e-27

Max
Depth

Legal
Trees

GP
Trees

Fraction
Legal

1 0 2 0.0
2 0 36 0.0
3 2 10440 1.9e-4
4 60 8.7e8 6.9e-8
5 32406 6.1e18 5.3e-15

6 8.0e9 3.0e38 2.7e-29Figure 15: Legal trees vs. GP trees for di�erent tree sizes using the non-terminal set N2.optimal tree of depth 5 when using the non-terminal set N1. However, with N2, there are many optimaltrees of depth 5 including(1) (MAT-VEC-MULT (MATRIX-INVERSE (MAT-MAT-MULT (MATRIX-TRANSPOSE A)(MATRIX-ADD A A)))(MAT-VEC-MULT (MATRIX-TRANSPOSE A) (VECTOR-ADD B B)))To see how important strong typing was in this problem, we did another small experiment. Using non-terminal set N2, we counted the number of legal trees (i.e., those trees whose types are consistent) of agiven size as well as the number of GP trees (i.e., those trees whose nodes all have the right number ofsubtrees/arguments but which are not necessarily type consistent) of this size. We then calculated theratio of legal trees to GP trees to determine the probability of a tree of this size randomly selected by anon-strongly-typed genetic programming algorithm being a legal tree. The results for di�erent sizes areshown in Figure 15.Analysis: While this problem is too easy to exercise the GP (genetic programming) part of STGP (thethree problems discussed below do exercise it), it clearly illustrates the importance of the ST (stronglytyped) part. What the results of Figure 15 show is that just generating legal parse trees is a computationallyintractable task if we try to do this by generating random GP trees and then selecting out the legal ones.Our method of generating only legal parse trees is clearly a superior approach and is what makes adauntingly di�cult problem into an easy one.3.3 The Kalman FilterProblem Description: The Kalman �lter is a popular method for tracking the state of a system withstochastic behavior using noisy measurements [Kalman 60]. A standard formulation of a Kalman �lter isthe following. Assume that the system follows the stochastic equation_~x = A~x+B~n1 (5)22

www.manaraa.com

where ~x is an n-dimensional state vector, A is an nxn matrix, ~n1 is an m-dimensional noise vector, andB is an nxm matrix. We assume that the noise is Gaussian distributed with mean 0 and covariance themxm matrix Q. Assume that we also make continuous measurements of the system given by the equation~y = C~x+ ~n2 (6)where ~y is a k-dimensional output (or measurement) vector, C is a kxn matrix, and ~n2 is a k-dimensionalnoise vector which is Gaussian distributed with mean 0 and covariance the kxk matrix R. Then, theestimate ~̂x for the state which minimizes the sum of the squares of the estimation errors is given by_̂~x = A~̂x+ PCTR�1(~y � C~̂x) (7)_P = AP + PAT � PCTR�1CP +BQBT (8)where P is the covariance of the state estimate.The work that we have done so far has focused on learning the right-hand side of Equation 7. In the\Analysis" portion, we discuss why we have focused on just the state estimate part (i.e., Equation 7) andwhat it would take to simultaneously learn the covariance part (i.e., Equation 8).Output Type: The output has type VECTOR-GENNUM1.Arguments: The arguments are: A has type MATRIX-GENNUM1-GENNUM1, C has type MATRIX-GENNUM2-GENNUM1, R has type MATRIX-GENNUM2-GENNUM2, P has type MATRIX-GENNUM1-GENNUM1, Y has type VECTOR-GENNUM2, and X-EST has type VECTOR-GENNUM1.Local Variables: There are no local variables.Terminal Set: T = fA;C;R;P;Y;X ESTgNon-Terminal Set:N = fMAT MAT MULT;MATRIX INVERSE;MATRIX TRANSPOSEMAT VEC MULT;VECTOR ADD;VECTOR SUBTRACTg (9)Evaluation Function: Before running the genetic algorithm, we created a track using Equations 5 and6 with the parameters chosen to beA = 264 0 1 20 0 10 0 0 375 ; C = " 1 2 �13 �1 1 # (10)B = 264 1 �12 10 �3 375 ; Q = " 2:5 �0:25�0:25 1:25 # ; R = " 0:05 00 0:05 # (11)Note that this choice of parameters implies GENNUM1=3 and GENNUM2=2. We used a time step of �t =0:005 (signi�cantly larger time steps caused unacceptably large approximation errors, while signi�cantlysmaller time steps caused unacceptably large computation time in the evaluation function) and ran the23

www.manaraa.com

system until time t = 4 (i.e., for 800 time steps), recording the values of ~x and ~y after each time step. Theinitial conditions of the track were ~x = 264 111 375 ; P = 0 (12)The genetic algorithm reads in and stores this track as part of its initialization procedure.Evaluating a parse tree is done as follows. Start with ~̂x equal to the initial value of ~x given in Equation 12and with P = 0. For each of the 800 time steps, update P and ~̂x according to~̂xnew = ~̂xold + �t � (value returned by tree); Pnew = Pold + �t � (righthandside of Equation 8) (13)After each time step, compute the di�erence between the state estimate and the state for that step. Thescore for a tree is the sum over all time steps of the square of this di�erence.Note that there is no guarantee that a parse tree implementing the correct solution given in Equation 7will actually give the best score of any tree. Two possible sources of variation are (i) the quantizatione�ect introduced by the fact that the step size is not in�nitesimally small and (ii) the stochastic e�ectintroduced by the fact that the number of steps is not in�nitely large. This is the problem of over�ttingwhich we briey discussed in Section 2.3.Genetic Parameters: We used a population size of 50,000, a parent scalar of 0.9995, a maximum initialdepth of 5, and a maximum depth of 7.Results: We ran STGP 10 times with the speci�ed parameters, and each time we found the optimalsolution given in Equation 7. To �nd the optimal solution required an average of 92,800 evaluations anda maximum of 117,200 evaluations. A minimal parse tree implementing this solution is(VECTOR-ADD (MAT-VEC-MULT A X)(MAT-VEC-MULT (MAT-MAT-MULT P (MATRIX-INVERSE R))(MAT-VEC-MULT (MATRIX-TRANSPOSE C)(VECTOR-SUBTRACT Y (MAT-VEC-MULT C X)))))On each of the runs, we allowed the genetic algorithm to execute for some number of evaluations after�nding the optimal solution, generally around 5000 to 10000 extra evaluations. In one case, STGP founda \better" solution than the \optimal" one, i.e. a parse tree which gave a better score than the solutiongiven in Equation 7. Letting this run continue eventually yielded a \best" tree which implemented thesolution _̂~x = A~̂x + PCTR�1(~y � C~̂x)� P 2~̂x (14)and which had a score of 0.00357 as compared with a score of 0.00458 for trees which implementedEquation 7.Analysis: Given appropriate genetic parameters and a su�cient number of evaluations, STGP had notrouble �nding the theoretically optimal solution for the state estimate given the correct covariance. Thisis a validation of STGP's ability to solve a moderately di�cult problem in vector/matrix manipulation24

www.manaraa.com

In one run, STGP was able to over�t to the training data by �nding an additional term which modeledthe noise. Because the search space is �nite, there exists some time step small enough and some total timelarge enough so that the theoretically optimal solution will also be the one which evaluates best on thedata. However, due to lack of computational power, we were not able to experiment with di�erent timesteps and total times in order to �nd out what time step and total time are required to prevent over�tting.(The evaluation time for a parse tree is proportional to the number of data points in the generated track.)One indication of STGP's current shortcomings was the fact that we were not able to make a seriousattempt at solving the full problem, i.e. simultaneously deriving the state estimate (Equation 7) and thecovariance (Equation 8). The problem is twofold: �rst, the combined expression is much more complicatedthan the single vector expression, and second, the terms in the covariance update equation have onlyhigher-order e�ects on the state estimate and hence the error. This means that large amounts of data areneeded to allow these higher-order e�ects to not be washed out by noise. The combined e�ect is that therequired computational power is far beyond what we had available to us for these experiments.3.4 The Function NTHProblem Descrition The Lisp function NTH takes two arguments, a list L and an integer N, and returnsthe Nth element of L. The standard de�nition of NTH [Steele 84] speci�es that it actually returns the(N + 1)st element of the list; e.g., for N = 1, NTH will return the second element of the list. For N < 0,NTH is de�ned to raise an error, and for N � length(L), NTH is de�ned to return NIL, the empty list.Using STGP, we cannot learn NTH de�ned this way because of the type inconsistency caused by returningthe empty list in some situations. Instead, we de�ne three variations on the function NTH, which inincreasing order of complexity are� NTH-1 is identical to NTH except that for N � length(L) it raises a Bad-List-Element error insteadof returning the empty list and for N < 0 it returns the �rst element rather than raising an error.(The latter change is just for simplicity.)� NTH-2 is the same as NTH-1 except that it actually return the N th element of L rather than the(N + 1)st element.� NTH-3 is the same as NTH-2 except that for N > length(L) it returns the last element of the listinstead of raising a Bad-List-Element error.Output Type: The output has type GENTYPE1.Arguments: The argument N has type INTEGER, and the argument L has type LIST-OF-GENTYPE1.Local Variables: Variable 1 has type LIST-OF-GENTYPE1.Terminal Set: T = fN;L;GET VAR 1gNon-Terminal Set: We used three di�erent non-terminal sets for the three variations of NTH. For25

www.manaraa.com

NTH-1, NTH-2 and NTH-3 respectively, they areN1 = fCAR;CDR;EXECUTE TWO;DOTIMES; SET VAR 1g (15)N2 = fCAR;CDR;EXECUTE TWO;DOTIMES; SET VAR 1;ONE;PLUS;MINUSg (16)N3 = fCAR;CDR;EXECUTE TWO;DOTIMES; SET VAR 1;ONE;PLUS;MINUS;MIN;LENGTHg (17)Evaluation Function: For NTH-1, we used 53 di�erent examples to evaluate performance. Each examplehad N assume a di�erent value in the range from -1 to 51. For all the examples we took L to be a list oflength 50 with all of its entries unique. For each example, the evaluation function executed the tree andcompared the returned value with the expected result to compute a score; the scores for each example werethen summed into a total score. The score for each example was de�ned as 0 if the correct behavior wasto raise an error but the tree returned a value, 0 if the correct behavior was to raise an error but the treereturned a value, 10 if the correct behavior was to raise an error and the tree raised an error, and 10 � 2�dif the correct behavior was to return a value and the tree returned a value that was d positions away fromthe correct position in the list. For example, if the list was (3; 1; 9; 4; ::::) and N was 3, then a tree thatreturned 9 would get a score of 5 for this example while a tree that returned 3 would get a score of 1.25.For NTH-2, we used the same evaluation function as for NTH-1 except that N assumed values in the range0 to 52 and the expected result for each example was the N th rather than the (N + 1)st list element.For NTH-3, we used the same evaluation function as for NTH-2 with the following changes. First, therewas no case in which the correct behavior was to raise an error; for the cases when N > length(L), thecorrect behavior is to return the last list element. Second, we shortened the length of L to 20 instead of50, purely for the purpose of speeding up the evaluation function. Third, we allowed N to range from 0to 26; the large number of cases with N > length(L) was to amply reward a tree which handled this casecorrectly.Genetic Parameters: For NTH-1 and NTH-2, we used a population size of 1000, a parent scalar of 0.99,a maximum initial depth of 5, and a maximum depth of 7. For NTH-3, we used a population size of 15,000,a parent scalar of 0.9993, a maximum initial depth of 6, and a maximum depth of 8.Results: We made ten runs of the genetic algorithm for the NTH-1 problem. All ten runs found anoptimal solution with an average of 1335 trees evaluated before �nding a solution. Five of the runs foundan optimal solution in the initial population of 1000, and the longest run required 1900 evaluations (1000for the initial population and 900 more for trees generated during reproduction). A tree which is minimalwith respect to nodes and depth is(EXECUTE-TWO (DOTIMES (EXECUTE-TWO (SET-VAR-1 L) N)(SET-VAR-1 (CDR GET-VAR-1)))(CAR GET-VAR-1))We made ten runs of the genetic algorithm for the NTH-2 problem. All ten runs found an optimal solutionwith an average of 2435 and a maximum of 3950 trees evaluated before �nding a solution. A tree which isa solution and which is minimal with respect to nodes and depth is26

www.manaraa.com

(EXECUTE-TWO (DOTIMES (EXECUTE-TWO (SET-VAR-1 L) (- N 1))(SET-VAR-1 (CDR GET-VAR-1)))(CAR GET-VAR-1))For NTH-2, we also performed an experiment to determine the e�ectiveness of random search. Thisconsisted of randomly generating parse trees using the same method used to generate the initial populationof the genetic algorithm: ramped-half-and-half with a maximum depth of 5 plus a check to make sure thateach tree generated is unique from all the others. However, for this experiment, we kept generating treesuntil we found an optimal one. The �rst such run of the random search algorithm required 60,200 trees tobe evaluated before �nding an optimal one. A second run required 49,600 trees to be evaluated.We made ten runs of the genetic algorithm for the NTH-3 problem. Nine out of ten runs found an optimalsolution with an average of 35,280 and a maximum of 44,800 trees evaluated before �nding a solution. Theonly unsuccessful run converged to a point where the 15000 members of the population provided 15000di�erent solution to the NTH-2 problem. A tree which is a solution to NTH-3 and which is minimal withrespect to nodes and depth is(EXECUTE-TWO (DOTIMES (EXECUTE-TWO (SET-VAR-1 L) (- (MIN N (LENGTH L)) 1))(SET-VAR-1 (CDR GET-VAR-1)))(CAR GET-VAR-1))Analysis: The NTH-1 problem, like the least-squares regression problem, was too easy to test the geneticalgorithm part of STGP. However, moving from NTH-1 to NTH-2 (adding just a little bit of complexityto the problem by adding three new functions to the non-terminal set and replacing N with (- N 1) in theminimal optimal tree) made the problem su�ciently di�cult to clearly illustrate the di�erence betweenrandom search and genetic algorithms. While the search time for the genetic algorithm increased by onlya factor of two, the search time for random search increased by a factor of approximately 25. Althoughcomputational limitations kept us frommoving out further along the evaluations versus problem complexitycurve for random search, these results yield the same conclusion as those of [Koza 92]: that genetic searchof parse tree space is superior to random search for su�ciently complex searches, and the reason is thebetter scaling properties of genetic algorithms.The NTH-3 problem is more di�cult than NTH-2 for a few reasons. First, a minimal-size optimal solutionrequires three extra nodes in the parse tree. Second, the minimal-size optimal solution has depth 7 andhence requires us to search through a space where the parse trees can have greater depth and which ishence a much bigger space. Third, there are two extra functions in the non-terminal set. This increase indi�culty is reected in the increase in required times to �nd a solution.3.5 The Function MAPCARProblem Description: The Lisp function MAPCAR takes two arguments, a list L and a functionFUNARG, and returns the list obtained by applying FUNARG to each element of L. Here, we show howSTGP can learn this function. 27

www.manaraa.com

Note that to be able to use the function MAPCAR as an element of a non-terminal set for learning otherhigher-level functions requires the concept of a functional argument, i.e. the ability to pass a function (andnot the result of applying a function) as an argument to another function. We have not yet implementedfunctional arguments, but it is possible to do so using STGP (the functional argument will have type ofthe form FUNCTION-RETURNING-type1-ARGUMENT-type2-type3), and we hope to have functionalarguments in the future.Output Type: The output is of type LIST-OF-GENTYPE2.Arguments: The argument L has type LIST-OF-GENTYPE1, and the argument FUNARG is a functiontaking a GENTYPE1 and returning a GENTYPE2.Local Variables: Variable 1 is of type LIST-OF-GENTYPE1, and variable 2 is of type LIST-OF-GENTYPE2.Terminal Set: T = fL;GET VAR 1;GET VAR 2gNon-Terminal Set:N = fCAR;CDR;EXECUTE TWO;DOTIMES; SET VAR 1; SET VAR 2;LENGTH;APPEND;FUNARGg (18)Evaluation Function: To evaluate performance, we used three di�erent lists for the argument L andone function for the argument FUNARG. The three lists were: (1) the empty list, (2) a list with a singleelement equal to 1, and (3) a list with 50 elements whose values are the integers between 1 and 50. Thefunction was the identity. The score SL for each list L given that executing the parse tree either producesan error or the list Lr isSL = (�10� 2 � length(L) if error�2 � jlength(L)� length(Lr)j+Pe2L 2�dist(e;Lr) otherwise (19)where dist(e; Lr) is 1 if e 62 Lr and otherwise is the distance of e from the eth position in Lr.The rationale for our choice of lists is as follows. The 50-element list is the primary test of performance.Doing well on this list assures a good score. The two other lists are there to penalize slightly those parsetrees which do not perform correctly on short lists. An example of a parse tree which does perfectly onthe long list but gets an error on the empty list is(EXECUTE-TWO(DOTIMES(EXECUTE-TWO (SET-VAR-1 L) (LENGTH (CDR L)))(EXECUTE-TWO (SET-VAR-2 (APPEND GET-VAR-2 (FUNARG (CAR GET-VAR-1))))(SET-VAR-1 (CDR GET-VAR-1))))(APPEND GET-VAR-2 (FUNARG (CAR GET-VAR-1))))The error comes because when L is the empty list, then variable 1 is the empty list, and taking its CARgives an error. The above parse tree would receive a score of 500 as compared to a maximum score of 510.Some other sample parse trees with their scores are the following. The parse tree28

www.manaraa.com

(APPEND GET-VAR-2 (FUNARG (CAR GET-VAR-1)))receives the minimum score of -132. The parse tree(APPEND GET-VAR-2 (FUNARG (CAR L)))receives a score of -88. The parse tree(EXECUTE-TWO(DOTIMES (LENGTH L) (SET-VAR-2 (APPEND GET-VAR-2 (FUNARG (CAR L)))))GET-VAR-2)receives a score of 20. The parse tree(EXECUTE-TWO(DOTIMES(EXECUTE-TWO (SET-VAR-1 L) (LENGTH (CDR L)))(EXECUTE-TWO (SET-VAR-1 (CDR GET-VAR-1))(SET-VAR-2 (APPEND GET-VAR-2 (FUNARG (CAR GET-VAR-1))))))GET-VAR-2)receives a score of 241. Finally, an optimal parse tree such as(EXECUTE-TWO(DOTIMES(EXECUTE-TWO (SET-VAR-1 L) (LENGTH L))(EXECUTE-TWO (SET-VAR-2 (APPEND GET-VAR-2 (FUNARG (CAR GET-VAR-1))))(SET-VAR-1 (CDR GET-VAR-1))))GET-VAR-2)receives the maximum score of 510.Genetic Parameters: We used a population size of 50,000, a parent scalar of 0.9998, a maximum initialdepth of 6, and a maximum depth of 8.Results: We ran STGP 10 times with the speci�ed parameters, and 8 of these 10 runs found an optimalsolution. For these runs which did �nd an optimal solution, the average number of individuals evaluatedbefore �nding an optimal one was 204,000, while the maximum numbers of evaluations was 300,000. Inthe other 2 runs, STGP converged prematurely to a population consisting of 50,000 distinct parse trees allof which evaluated to 20.Analysis: Based on the number of evaluations required to �nd an optimal solution, MAPCAR was clearlythe most di�cult problem of those discussed in this paper. To �nd an optimal solution with probability29

www.manaraa.com

> 0:95 takes on the order of 500,000 evaluations, roughly an order of magnitude more than any of theother problems. One key factor which makes this problem di�cult is the existence of a suboptimal solutionwhich is relatively easy to �nd and di�cult to get beyond.The large number of evaluations required to solve MAPCAR illustrates perhaps the main shortcomingof STGP. Despite the relatively good scaling of STGP (and genetic algorithms in general) with problemcomplexity, the amount of computation required as a function of problem complexity grows fast enoughthat, with today's computers, STGP can only solve relatively simple problems.4 ConclusionIn this paper, we have introduced the concept of Strongly Typed Genetic Programming (STGP). STGP isan extension to genetic programming which fully eliminates the closure constraint necessary for standardgenetic programming. It hence allows the user to de�ne functions which take any data types as argumentsand return values of any data type. We have de�ned for STGP the concepts of generic functions, genericdata types, local variables, and errors as a way of making STGP more practical and more powerful. In theprocess, we have taken the �rst steps towards the de�nition of a new programming language (essentially astrongly typed Lisp) which is particularly well suited to automatic programming.The primary experiments we have performed illustrate the e�ectiveness of STGP in solving a wide variety ofmoderately complex problems involving multiple data types. Other experiments show: (i) the importanceof using strong typing for generating trees and (ii) the importance of using a genetic algorithm rather thana random search through tree space.However, the experiments also illustrate the current shortcomings of STGP. First, it can be di�cult tode�ne good evaluation functions, even for relatively simple problems. Second, despite the fact that STGPscales well with complexity as compared with random search, truly complex problems are beyond theability of STGP to solve in a reasonable time with any of today's computers. While the experiments showthat STGP has great potential as an automatic programming tool, further improvements are necessary forit to be able to learn truly complex programs.References[Barnes 82] Barnes, J. 1982. Programming in Ada. Addison-Wesley.[Campbell and Meyer 1979] Campbell, S.L. and Meyer, Jr., C.D. 1979. Generalised Inverses of LinearTransformations. Pittman.[Cox, Davis and Qiu 91] Cox, Jr., A.L., Davis, L. and Qiu, Y. 1991. \Dynamic Anticipatory Routing inCircuit-Switched Telecommunications Networks," in [Davis 91], pp. 124{143.[Cramer 85] Cramer, N.L. 1985. A Representation for the Adaptive Generation of Simple Sequential Pro-grams. Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 183{187.[Davis 87] Davis, L. 1987. Genetic Algorithms and Simulated Annealing. Pittman.30

www.manaraa.com

[Davis 91] Davis, L. 1991. Handbook of Genetic Algorithms, Von Nostrand Reinhold.[Goldberg 89] Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.Addison-Wesley.[Kalman 60] Kalman, R.E. 1960. A New Approach to Linear Filtering and Prediction Problems. Trans.ASME: J. Basic Eng., vol. 82, pp. 35{45.[Kernighan and Ritchie 78] Kernighan, B. and Ritchie, D. 1978. The C Programming Language. Prentice-Hall.[Koza 92] Koza, J.R. 1992. Genetic Programming. The MIT Press.[Montana 91] Montana, D. 1991. \Automated Parameter Tuning for Interpretation of Synthetic Images,"in [Davis 91], pp. 282-311.[Montana 94] Montana, D. 1994. \Genetic Search of a Generalized Hough Transform Space," in prepara-tion.[Perkis 93] Perkis, T. 1993. \Stack-Based Genetic Programming,"[Steele 84] Steele, G. 1984. Common Lisp. Digital Equipment Corporation.[Syswerda 89] Syswerda, G. 1989. \Uniform Crossover in Genetic Algorithms," Proc. Third InternationalConference on Genetic Algorithms, pp. 2{9.

31

